<div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><br><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><span style="font-family:arial,sans-serif;font-size:13px"><div><span style="font-family:arial,sans-serif;font-size:13px"><br>
</span></div>
COLOQUIOS DEL DEPARTAMENTO DE FÍSICA FCEYN - UBA</span><br style="font-family:arial,sans-serif;font-size:13px"><br style="font-family:arial,sans-serif;font-size:13px"><br style="font-family:arial,sans-serif;font-size:13px">
<span style="font-family:arial,sans-serif;font-size:13px"> En el Aula Seminario, 2do piso, Pab. I,</span><br style="font-family:arial,sans-serif;font-size:13px"><br style="font-family:arial,sans-serif;font-size:13px">
<span style="font-family:arial,sans-serif;font-size:13px"> Jueves 20/11, 14hs:</span><span style="font-family:arial,sans-serif;font-size:13px"> </span></div><div dir="ltr"><b> </b></div></div><b> </b><span style="font-family:arial,sans-serif;font-size:13px">ALEJANDRO YACOMOTTI</span></div><div style="font-family:arial,sans-serif;font-size:13px"><b><br></b></div><span style="font-family:arial,sans-serif;font-size:13px"> </span><span style="font-family:arial,sans-serif;font-size:13px">Laboratoire de Photonique et de Nanostructures, CNRS</span></div><div><div style="font-family:arial,sans-serif;font-size:13px"><b><br></b></div><div><b style="font-family:arial,sans-serif;font-size:13px"> </b><b><span style="font-family:arial,sans-serif;font-size:13px"> </span><span style="font-family:arial,sans-serif;font-size:13px">Spontaneous mirror-symmetry breaking in a photonic molecule</span></b></div><div><div><p style="font-family:Helvetica;font-size:12px;margin:0px;font-stretch:normal;min-height:14px"><br></p><p style="font-family:Helvetica;font-size:12px;margin:0px;font-stretch:normal;min-height:14px"><br></p><div style="font-family:arial,sans-serif;font-size:13px"><div class="gmail_extra">Multi-cavity photonic systems, known as photonic molecules (PMs), are ideal multi-well potential building blocks for advanced quantum and nonlinear optics. A key phenomenon arising in double well potentials is the spontaneous breaking of the inversion symmetry, i.e. a transition from a delocalized to two localized states in the wells, which are mirror images of each other. Although few theoretical studies have addressed mirror-symmetry breaking in micro and nanophotonic systems, no experimental evidence has been reported to date. <br><br>In this talk I will show that, thanks to the potential barrier engineering we have implemented in a PM composed of two coupled photonic crystal nanolasers, we are able to demonstrate spontaneous mirror-symmetry breaking through a pitchfork bifurcation. Coexistence of localized states can be shown by switching them with short pulses. This offers exciting prospects for the realization of ultra-compact, integrated, scalable optical flip-flops based on spontaneous symmetry breaking. Furthermore, we predict such transitions with few intracavity photons for future devices with strong quantum correlations.</div><div><br></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div>
</div><br></div>
</div><br></div>
</div><br></div>
</div><br></div>
</div><br></div>
</div><br></div>
</div><br></div>
</div><br></div>