<div dir="ltr"><br><br><div class="gmail_quote">---------- Forwarded message ----------<br>From: <b class="gmail_sendername">srgonzal</b> <span dir="ltr"><<a href="mailto:srgonzal@cnea.gov.ar">srgonzal@cnea.gov.ar</a>></span><br>
Date: Thu, Dec 5, 2013 at 12:12 PM<br>Subject: Seminario "BNCT y más allá", Viernes 6/12 a las 14:30 hs, Aula cero, Edificio Tandar, CAC - CNEA<br>To: <a href="mailto:lbruno@df.uba.ar">lbruno@df.uba.ar</a><br><br>
<br>Estimados,<br>
<br>
los invitamos a todos al seminario de "BNCT y más allá"<br>
<br>
“Monte Carlo Approach for Hadron Therapy Application”<br>
<br>
Andrea Mairani<br>
Medical Physics Unit, CNAO Foundation, Pavia, Italy<br>
Heidelberg Ion Beam Therapy Center, Heidelberg, Germany<br>
<br>
Viernes 6/12 a las 14:30 hs, Aula cero, Edificio Tandar, CAC - CNEA<br>
<br>
Esperamos poder verlos a todos!<br>
<br>
******************************<u></u>******************************<u></u>******************************<u></u>***********<br>
RESUMEN:<br>
<br>
Monte Carlo (MC) codes are increasingly spreading in the hadrontherapy community due to their detailed description of radiation transport and interaction with matter. MC methods are being utilized at several institutions for a wide range of activities spanning from beam characterization to quality assurance and dosimetric/radiobiological studies.<br>
The suitability of a MC code for application to hadrontherapy demands accurate and reliable physical models for the description of the transport and the interaction of all components of the expected radiation field (ions, hadrons, electrons, positrons and photons). This becomes extremely important for correctly performing not only physical but also biologically-based dose calculations especially in cases where ions heavier than protons are involved. In addition, accurate prediction of emerging secondary radiation is of utmost importance in emerging areas of research aiming to in-vivo treatment verification.<br>
This contribution will address the specific case of the general-purpose particle and interaction code FLUKA. Validations and applications at several experimental sites as well as proton/ion therapy facilities with active beam delivery systems will be presented:<br>
• Generation of synchrotron accelerator library of proton/carbon ion beam energies and foci (i.e., lateral widths at the isocentre of the treatment unit).<br>
• Physical database generation: laterally integrated depth-dose profiles, lateral-dose distributions at different depths, secondary fragments yields and fragment energy spectra at different depths.<br>
• Forward MC re-calculations of physical/RBE-weighted dose distributions of proton and carbon ion treatment plans.<br>
• MC-based treatment planning in proton therapy.<br>
The satisfactorily agreement of FLUKA against several dosimetric/nuclear yields data indicates that the code already represents a valuable choice for supporting a large variety of applications in proton and ion beam therapy.<br>
******************************<u></u>******************************<u></u>******************************<u></u>************<span class="HOEnZb"><font color="#888888"><br>
<br>
-- <br>
Sara J. González, Ph.D.<br>
Computational Dosimetry and Treatment Planning Group, BNCT<br>
National Atomic Energy Commission of Argentina<br>
<br>
Tel: 54 11 6772-7865<br>
Fax: 54 11 6772-7611<br>
</font></span></div><br><br clear="all"><div><br></div>-- <br>Dra. Luciana Bruno<br>Departamento de Física e IFIBA-CONICET<br>Facultad de Ciencias Exactas y Naturales<br>Universidad de Buenos Aires.<br>(1428) Ciudad Universitaria,<br>
Ciudad de Buenos Aires, Argentina.<br>TE +54 11 4576 3390 ext 819<br>Fax +54 11 4576 3357<br>email: <a href="mailto:lbruno@df.uba.ar" target="_blank">lbruno@df.uba.ar</a><br><a href="http://www.df.uba.ar/users/lbruno/wordpress/" target="_blank">http://www.gdti.df.uba.ar/</a><div style="display:inline">
</div><div style="display:inline"></div>
</div>