Seminario de Probabilidad y Estadística Matemática.<br><br>PROXIMO ENCUENTRO: Miércoles 20 de julio, 12:00hs.<br>EXPOSITOR: <meta http-equiv="content-type" content="text/html; charset=utf-8"><span class="Apple-style-span" style="border-collapse: collapse; color: rgb(80, 0, 80); font-family: arial, sans-serif; font-size: 13px; "><meta http-equiv="content-type" content="text/html; charset=utf-8">Carlos Lamarche, University of Oklahoma</span><br>
TITULO: <meta http-equiv="content-type" content="text/html; charset=utf-8"><span class="Apple-style-span" style="border-collapse: collapse; color: rgb(80, 0, 80); font-family: arial, sans-serif; font-size: 13px; ">Robust Penalized Estimation for Panel Data Quantile Regression.</span><br>
LUGAR: Instituto de Cálculo, 2do piso, Pabellón 2.<br><br>RESUMEN: <meta http-equiv="content-type" content="text/html; charset=utf-8"><span class="Apple-style-span" style="border-collapse: collapse; color: rgb(80, 0, 80); font-family: arial, sans-serif; font-size: 13px; ">We present recently developed methods for estimating a quantile regression panel data model. We restrict our attention to penalized estimators for panel data. An $\ell_1$ penalty serves to shrink a vector of individual specific effects toward a common value and a tuning parameter $\lambda$ controls the degree of this shrinkage. Existing approaches in the literature for $\lambda$ selection could lead to incorrect inference under non-classical assumptions. This paper offers a robust alternative for $\lambda$ selection, which is based on a method that does not rely on Gaussian conditions, existence of second moments and spherical errors. It is shown that the class of estimators is asymptotically unbiased and Gaussian when the individual effects are drawn from a class of zero-median distribution functions. The optimal tuning parameter, $\lambda$, can thus be selected to minimize estimated asymptotic variance. We carry out several Monte Carlo studies to investigate the finite sample performance of the method in comparison with other candidate methods. A few empirical </span><span class="Apple-style-span" style="border-collapse: collapse; color: rgb(80, 0, 80); font-family: arial, sans-serif; font-size: 13px; ">applications illustrate the use of the approach. </span><div>
<font class="Apple-style-span" color="#500050" face="arial, sans-serif"><span class="Apple-style-span" style="border-collapse: collapse;"><br></span></font></div><div><font class="Apple-style-span" color="#500050" face="arial, sans-serif"><span class="Apple-style-span" style="border-collapse: collapse;"><br>
</span></font><div>_______________________________________________________________________<br>Para ver el calendario del seminario<br><a href="http://www.google.com/calendar/embed?src=987brtcpho5tt3ch2ud0oobkds%40group.calendar.google.com&ctz=America/Argentina/Buenos_Aires">http://www.google.com/calendar/embed?src=987brtcpho5tt3ch2ud0oobkds%40group.calendar.google.com&ctz=America/Argentina/Buenos_Aires</a><br>
<br>Para mas información sobre el seminario<br><a href="http://mate.dm.uba.ar/~drodrig/seminario/">http://mate.dm.uba.ar/~drodrig/seminario/</a><br><br>Para recibir información sobre el seminario, suscribirse a la lista Kolmogorov<br>
<a href="http://mate.dm.uba.ar/mailman/listinfo/kolmogorov">http://mate.dm.uba.ar/mailman/listinfo/kolmogorov</a><br>____________________________________________________________________<br><br></div></div>